Fault Sensing Using Fractal Dimension and Wavelet
نویسندگان
چکیده
Abstract: A new fusion sensing (FS) method was proposed by using the improved fractal box dimension (IFBD) and a developed maximum wavelet coefficient (DMWC) for fault sensing of an online power cable. There are four strategies that were used. Firstly, the traditional fractal box dimension was improved to enlarge the feature distances between the different fault classes. Secondly, the IFBD recognition algorithm was proposed by using the improved fractal dimension feature extracted from the three-phase currents for the first stage of fault recognition. Thirdly, the DMWC recognition algorithm was developed based on the K-transform and wavelet analysis to establish the relationship between the maximum wavelet coefficient and the fault class. Fourthly, the FS method was formed by combining the IFBD algorithm and the DMWC algorithm in order to recognize the 10 types of short circuit faults of online power. The designed test system proved that the FS method increased the fault recognition accuracy obviously. In addition, the parameters of the initial angle, transient resistance, and fault distance had no influence on the FS method.
منابع مشابه
An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملA Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse resp...
متن کاملReservoir Rock Characterization Using Wavelet Transform and Fractal Dimension
The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 9 شماره
صفحات -
تاریخ انتشار 2016